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Abstract—With the rise of internet usage, code-switching,
where multiple languages or dialects intermingle, has surged.
Traditional linguistic analysis struggles with this mixed text, as
they’re typically monolingual-focused. This paper delves into
two core tasks for analyzing code-switched data: Token Level
Language Identification (LID) and our newly proposed Language
Pair Identification (LPI). We benchmarked and compared cur-
rent state-of-art transformer models across both tasks to gauge
their applicability to the tasks. Our results showed that state-of-
the-art multilingual transformer models could achieve state-of-
the-art performance on both tasks. The impressive performance
on LPI suggests that this will be the first step to utilizing
Language Pair Identification to assist in various facets related
to Code-Switched corpora and classification performance.

Index Terms—Language identification, Token Level Analysis,
Language Pair Recognition, BERT, Transformer

I. INTRODUCTION

The meteoric rise in the use of the internet through social

media and communications is due to the ever-increasing ease

of access worldwide. The increased internet access has gen-

erated massive amounts of human-generated data, specifically

textual-based data, which has led to an emergence of a field of

Natural Language Processing to analyze and handle massive

amounts of data. However, one major drawback of this is

that the research of analyzing and handling the data has been

focused on monolingual analysis. At the same time, this is

important to conduct monolingual research, with the globe

becoming more interconnected through the internet leading

to the mixing of languages and blending across cultures and

regions. With this, Bilingual textual data is being produced at

a high rate and will only increase with the further expansion

of the internet. Bilingual textual data has produced a unique

problem of accurately analyzing the text through the use of 2

or more languages. This has created a new Natural Language

Processing genre, Linguistic code-switching.

Linguistic code-switching is using two or more lan-

guages/dialects in conversation. While it has been studied

extensively in psycho-linguistics and socio-linguistics [1, 2, 3],

(*) means contact author
Also thanks to be added upon acceptance.

it is still in its early stages when it comes to the analysis of

the text being automated. This is where automated Language

Identification comes in to aid the task of having technology in

place to automate the processing of the data to prepare it for

data analysis due to the large amount of Code Switched data

available. However, it can not be processed timely / efficiently

because the current techniques are primarily by hand. It has

become necessary to develop tools that will automate this

process.

In this paper, we conduct 2 Experiments a single model for

LID to classify code-switch data language labels and a novel

task that can distinguish between language pairs. Language

Pair Identification is a novel approach to analyzing a code-

switched sentence and telling what specific language pair

is within the sentence. This can be key to an approach of

data where the pair is unknown and be utilized to analyze

the sentence with the proper language pair-model. For both

tasks, we utilize current state-of-the-art transformer models

to baseline their performance on both tasks and to see their

applicability to these tasks.

The following section reviews relevant research on the LID

task and details the proposed Language Pair Identification

task. This paper seeks to help advance and contribute to

the NLP and code switched data analysis by evaluating the

performance of current state-of-the-art transformer models and

methods across LinCE [4] provided datasets. We end with a

presentation of our results and a brief discussion of limitations

and future work.

II. RELEVANT WORKS

While there is sufficient work on the sentiment analysis task

with code-switched text [5, 6], the following relevant work

discussed will be limited to the Language Identification Task.

A. Language Identification (LID) Task

Language Identification (LID) is critical in handling code-

switched data since it is the initial step in determining whether

a system can effectively process code-switched data. By

correctly classifying the language associated with individual
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tokens, LID enables higher-level applications that require

general language understanding to process code-switched text.

While throughout the years, there have been a lot of

iterations and similar data sets based on code-switched data,

specifically LID. The constant changes in datasets used are due

to the field being in its early stages. It needed more structure to

properly support the advancements in code-switched analysis

to have models that can have generalized performance ready

for real-world use.

Recently LinCE [4] has been able to help solve this by

providing a centralized benchmark and a strong corpa for LID,

Parts-of-Speech (POS) Tagging, Named Entity Recognition

(NER), Sentiment Analysis (SA), and Machine Translation

(MT) with an extensive and growing amount of Language

Pair datasets that are appropriately labeled and balanced. With

them, they have allowed research to find best-performing

models for specific tasks and allow methods to be applied

across different language pairs to demonstrate if the methods

work in general or are language specific.

Specifically for LID, LinCE [4] has been able to elevate the

task in that they were able to provide four datasets that are

comparable to each other and as balanced as a dataset of this

nature could get. The corpora follow the CALCS LID label

scheme, which includes labels for lang1, lang2, mixed (text

containing both languages partially), ambiguous (text in either

one or the other language), fw (a language different than lang1

and lang2), ne (named entities), other, and unk (unrecognizable

words). LinCE datasets were essential in advancing the task

since it allows models to show whether they have generalized

performance. The datasets provided were all pre-existing but

used better data splits to demonstrate a model’s performance

truly.

B. Contemporary Models and Techniques for LID

According to the LinCE leaderboards, the current best-

performing models for the LID task all use some pre-trained

BERT(Bidirectional Encoder Representations) [7] finetuning

with and its other models based on the BERT structure such

as XLM-Roberta [8]. This technique has yielded the best

performance compared to previous techniques of developing

deep learning model networks. This is because BERT has

been proven to have outstanding generalized performance

on the whole gamut of natural language tasks due to its

ability to develop a deep understanding of the text provided

to it and its pattern recognition within the text. According

to LinCE leaderboards, the best-performing model is XLM-

Roberta. This section will not cover it due to its anonymity,

so we cannot cover how they did it. We will use the two

well-documented models on the leaderboards, which include

Char2Subword [9] and Much Gracias [10].

1) Char2Subword [9]: is ranked two on the LID task,

where they were able to propose a char2subword module that

would expand mBert (multilingual BERT) ability to generate

word embeddings without the restriction of models fixed

vocabulary. This was done by replacing BERT’s subword

embedding table with a technique that would be able to

take in words at a character level instead of an word level

allowing for the embeddings to be vastly more robust in that

it can account for misspellings, punctuation’s, and more word

level variance that is mitigated by character level tokenization.

While char2subword is not only for the task of LID, it

did prove beneficial by being able to generate the defacto

best-performing model in the LID task that is documented

with an overall weighted F1 of 95.48 across all datasets

of Spanish-English (SPA-ENG), Hindi-English (HIN-ENG),

Nepali-English (NEP-ENG), and Modern Standard Arabic-

Egyptian Arabic (MSA-EA). Its per language pair performance

is seen in the table below.

Language Pair Weighted F1
Overall 95.48
SPA-ENG 98.33
HIN-ENG 96.23
NEP-ENG 96.19
MSA-EA 91.19

TABLE I: Char2Subword [9] Weighted F1 Performance

In table I, it showcases the performance of the char2subword

model in the Language Identification (LID) task has been

exceptional, positioning it as the top-performing model. With

an impressive overall weighted F1 score of 95.48 across

all datasets, including Spanish-English (SPA-ENG), Hindi-

English (HIN-ENG), Nepali-English (NEP-ENG), and Modern

Standard Arabic-Egyptian Arabic (MSA-EA), char2subword

has demonstrated its efficacy in accurately identifying lan-

guages in code-switched text.
2) Much Gracias [10]: is the next highest-ranked docu-

mented model in the Top 7 on the leaderboard. Much Gracias

also provides a novel approach, comprehensively evaluating

various models for semi-supervised language identification in

English-Spanish code-switched data. The models investigated

include word uni-grams, word n-grams, character n-grams,

Viterbi Decoding, Latent Dirichlet Allocation, Support Vector

Machine, and Logistic Regression. Overall, the study demon-

strates promising results across most models, highlighting

their potential for this task. Among the evaluated models,

the Viterbi decoding model stands out as the top performer,

achieving a weighted F1 score of 95.76% on the validation

data and 92.23% on the test data (RQ1). Their Viterbi decoding

approach, involved tackling the problem of code-switching by

modeling, seeing it as a Hidden Markov Model (HMM). They

recognized that a sentence can be viewed as a Markov chain

with hidden states representing the two languages involved

in code-switching. To assign language labels (states) to each

word (observation), they employed the Viterbi decoding al-

gorithm [11]. They utilized an implementation of the Viterbi

algorithm by Eginhard. They conducted a grid search on the

development set to optimize their model.

While the performance is not state of the art, it offers

a valuable takeaway highlighting the advantages of more
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straightforward and faster approaches, such as the models

examined in this study. Their approaches prove advantageous

when top performance is not crucial. They enable researchers

to avoid the labor-intensive human annotation process and the

extensive training time required for fine-tuning large trans-

former models on supervised data.

III. PROPOSED TASK: LANGUAGE PAIR IDENTIFICATION

This section offers a comprehensive exposition of our

novel proposed task known as Language Pair Identification.

Providing an introduction to the task, the rationale behind its

development, datasets utilized, and its potential applications,

especially in the realm of natural language processing and

code-switched text analysis.

A. Introduction to Language Pair Identification (LPI)

Language Pair Identification (LPI) is a natural language pro-

cessing task we propose that involves determining the specific

language pairs used in a text that exhibits code-switching.

Multiple languages or dialects are seamlessly integrated within

code-switched text, and LPI aims to identify which language

pairs are involved in the written content. The foundation for

this task is rooted in the study presented in [12]. In this

research, a language identification model was employed to

discern the language of a text. Subsequently, this information

was leveraged to select a language-specific model, leading to

a performance enhancement of 4% universally in sentiment

analysis for African languages. Given the parallels between

Code-Switched and African Language NLP research, both

characterized by being low-resource challenges, LPI is poised

to assist in various facets related to Code-Switched corpora

and classification performance.

B. Rationale for LPI

One might wonder why there is an emphasis on identi-

fying language pairs in code-switched text. The reasons are

multifold. While numerous multilingual models exist in the

realm of NLP, their performance often needs to improve

compared to models explicitly trained on individual languages,

particularly for intricate tasks like sentiment analysis. By

zeroing in on the exact language pairs in code-switched text,

we can harness the power of models tailored to these specific

languages, enhancing the accuracy and effectiveness of anal-

ysis. Furthermore, LPI stems from a need to automate and

streamline traditionally manual, time-consuming, and error-

prone processes. An example is how the datasets from LinCE

[4] needed manual categorization.

C. Datasets for LPI

Initially, for the LPI task, we will primarily draw upon the

previously mentioned LinCE datasets. These datasets serve

as the foundation for our task, providing robust examples of

code-switched text from which our model can learn. In the

future, as the corpus of code-switched data expands, we plan to

incorporate examples that go beyond those involving English

in the code-switching.

To enhance the scope and ensure the model’s ability to

distinguish between code-switched and monolingual text, a

segment of English text will be integrated. The English only

text will be sourced from Sentiment140 [13] dataset which

includes over 1.6 million tweets labeled by sentiment. Sen-

timent140 was selected due to its extensive volume of data

and its resemblance to the origins of the LinCE datasets. This

inclusion is crucial for LPI since it will showcase a model’s

ability to discern between traditional monolingual text and the

complexities of code-switched content.

Furthermore, it is worth noting that our utilization of the

LinCE datasets will be specifically from its LID task. However,

instead of maintaining the original LID token labels, these will

be removed to represent the respective language pairs from

which each dataset originates.

D. Applications of LPI

The potential applications of LPI are wide-ranging and

pivotal for advancing code-switched text analysis. LPI can lead

to integrating multiple models trained distinctly on identified

language pairs. This would circumvent the limitations posed

by broader multilingual models. Moreover, LPI can signifi-

cantly expedite and automate the creation and categorization

of datasets akin to the ones from LinCE. Doing so paves the

way for a more robust and refined data infrastructure, which

in turn can significantly elevate the quality of analysis. In

essence, LPI does not just offer a solution to a niche problem;

it can significantly enhance how we approach and understand

code-switched text.

IV. METHODOLOGY

The following subsections will cover the Datasets, Ex-

periments, Pre-processing, Modeling, and Evaluation where

all Experiments were completed on a labmda laptop or a

Google Collaboratory Notebook. It is highly recommended to

complete the Experiments. An GPU with large amounts of

VRAM will vastly speed up the training/testing times of the

Experiments.

A. Datasets

This section will describe the four datasets; Spanish-

English (SPA-ENG), Hindi-English (HIN-ENG), Nepali-

English (NEP-ENG), and Modern Standard Arabic-Egyptian

Arabic (MSA-EA) used for the LID task. All the datasets

follow the format of CALCS LID label scheme, which is

comprised of lang1, lang2, ambiguous (can be one or the

other language), mixed (combination of both languages), fw

(a language that is different from lang1 and lang2), ne (named

entities), other, and unk (unrecognizable words). The datasets

comprise the majority of lang1, lang2, ne, and other labels.

An additional dataset is covered for the Language Pair Identi-

fication task, which is the English dataset. While it is not part

of the LID Task, the dataset is English sentences from Twitter

which is needed for Experiment 1.

195

Authorized licensed use limited to: Howard University. Downloaded on January 18,2025 at 20:12:32 UTC from IEEE Xplore.  Restrictions apply. 



1) Spanish-English: The Spanish-English dataset comes

from the 2016 CALCS workshop[14] where it is comprised

of Twitter data containing 32,651 posts totaling up to 390,953

tokens. LinCE slightly modified the dataset to improve the

data splits to further balance the dataset.

2) Hindi-English: The Hindi-English dataset comes from

[15], comprising Twitter and Facebook data containing 7,421

posts totaling up to 146,722 tokens. LinCE also modified this

dataset due to the combination of Twitter and Facebook data,

leading to the Facebook data being considerably longer than

the Twitter data, which was modified to account for that.

3) Nepali-English: The Nepali-English dataset comes from

the 2016 CALCS workshop [16], comprising of Twitter data

containing 13,011 posts totaling up to 188,784 tokens. LinCE

modified the dataset to generate a dev/validation split since

the original dataset only includes train and test splits.

4) Modern Standard Arabic-Egyptian Arabic: Modern

Standard Arabic-Egyptian Arabic dataset comes from the

2016 CALCS workshop [14] where it comprises Twitter

data containing 11,243 posts totaling up to 227,354 tokens.

LinCE slightly modified the dataset to have improved label

distribution between the splits.

5) Sentiment140: Sentiment140 is from [13] comprising all

Twitter posts that was sourced similar to the LinCE datasets,

in it being social media text. This dataset contains over 1.6

million posts, vastly more than the LinCE datasets. To ensure

the balance, we randomly pick the equivalent amount of tweets

as the other four datasets’ sentence count combined for each

data split of train/validation/test.

B. Experiments

This section will detail the two steps of our proposed

algorithm approaches in the LID task: the codeswitched lan-

guage pair identification and the conventional LID Task. These

models should be implemented to work together.

C. Pre-processing

The Pre-Processing of both tasks utilized Huggingface’s

library [17] for tokenizing and finetuning. They differ in

preprocessing since Language Pair Identification is sentence-

level classification, and Single Model LID TASK is token-level

classification.

1) Language Pair Identification: In the process of preparing

the dataset for our study, we sourced our primary data from

the LinCE LID dataset. This dataset, in its original format,

consists of individual tokens representative of fragmented

sentence components. To construct meaningful and coherent

sentences, we adopted a systematic approach of sequentially

aggregating these tokens. Each token was concatenated using a

space delimiter, effectively reconstructing the original sentence

structures.

To facilitate the training phase and enable our model to

discern between different language combinations, a critical

preprocessing step was introduced. Each reconstituted sen-

tence was then labeled based on its originating dataset. For

example, sentences that were derived from the NEP-ENG

dataset were duly assigned the ’NEP-ENG’ label. Such a

labeling schema serves to provide a clear mapping of each

sentence to its linguistic origin, which is crucial for the LPI

task.

Recognizing the importance of challenging the model’s

discriminatory capacities, we further enriched our dataset. An

English-only dataset was integrated into our corpus. The ratio-

nale behind this integration was two-fold: firstly, to augment

the volume and diversity of our training data, and secondly, to

ensure that our model possesses the capability to effectively

distinguish between monolingual English sentences and those

that manifest code-switching phenomena. This enhancement

aims to equip our model for a more realistic linguistic envi-

ronment, where it may encounter a broad spectrum of sentence

structures and linguistic combinations.

2) Single Model LID TASK: In the tokenization phase, a

challenge often encountered is the alignment between tokens

and their corresponding labels. Specifically, certain words,

when tokenized, may yield multiple subword units, resulting

in a potential misalignment between the number of tokens

produced by the tokenizer and their associated labels. This

misalignment, if left unchecked, can introduce significant

noise into the data and compromise the integrity of the learning

process.

To address this challenge, we adopted a strategic approach

during token processing. Instead of indiscriminately labeling

all sub-tokens derived from a single word, only the primary

or first token was assigned a label. Subsequent sub-tokens,

which are essentially fragments of the original word, were

deliberately ignored for the purpose of labeling. This approach

ensures a one-to-one correspondence between words and their

labels, thereby preserving the integrity of the labeling process.

Once this meticulous tokenization and labeling process

was completed, the tokenized datasets were systematically

merged to produce a cohesive and uniform dataset. Upon

successful combination and rigorous quality checks, the data

was deemed ready and was subsequently fed into the training

model. This iterative and thorough preprocessing pipeline was

instrumental in ensuring the fidelity and robustness of the

model’s subsequent learning phase.

D. Modeling and Evaluation

For modeling, for both Experiments, we trained two models,

including xlm-roberta-large [8] and BERT-base-multilingual-

cased [7]. These models were chosen due to their downstream

task-leading ability and ability to understand multilingual text

at a high level that other models are far from when it comes

to that. They were each finetuned using Huggingface’s library

[17]. The model was trained using the following hyperparam-

eters: A learning rate of 2e-5, a batch size of 64 samples both

for training and validation and the training process spanned

over 5 epochs. Additionally, to ensure the model remains

generalized and doesn’t overfit, we incorporated a weight

decay of 0.01. These parameters were chosen through an

Models were evaluated with the weighted F1 metric. With

the ability of a model to predict each label type. There is also
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per language performance reported and overall performance

across all four datasets. Since for Experiment 1, the research

is novel, there is no baseline to compare to. However, for

Experiment 2, we compared the scores to the char2subword,

LinCE baseline performance, and Much Gracias [10] Viterbi

model to see whether the single model is viable compared to

language-specific models.

V. RESULTS

A. Language Pair Identification Task Results

models precision recall f1-score accuracy
bert-base-multilingual-cased 0.94 0.94 0.94 0.94
xlm-roberta-large 0.94 0.94 0.94 0.94

TABLE II: Overall Model performance on Language Pair

Identification. The Metrics are weighted average when appli-

cable

In table II, the high performance of both the bert-base-

multilingual-cased and xlm-roberta-large models is evident.

These results underscore that both models have successfully

handled the Language Pair Identification Task, setting a re-

markably high baseline for future research in this domain. The

consistently high scores across various metrics demonstrate the

potential of these architectures in establishing robust standards

for identifying and distinguishing between different language

pairs. Establishing such a strong baseline is paramount, given

the inherent complexities and nuances associated with code-

switched data. This achievement validates the capabilities of

the presented models and challenges future endeavors to match

or surpass this established benchmark.

precision recall f1-score support
Spanish-English 0.95 0.91 0.93 8289
Hindi-English .81 0.78 0.80 1854
MSA-EA 1.00 1.00 1.00 1663
Nepali-English 0.94 0.92 0.93 3228
English .93 0.97 0.95 15034

TABLE III: Bert-base-multilingual-cased Per category Metrics

In table III, gives further insight into the overall performance

numbers of the best performing model bert-base-multilingual-

cased. Despite the model’s commendable overall performance,

it is evident that it encounters challenges when processing the

Hindi-English language pair. This facet certainly warrants a

more in-depth analysis and understanding. Furthermore, the

seemingly impeccable performance exhibited by the model

for the MSA-EA pair can be somewhat misleading. A closer

inspection reveals that the MSA-EA pair is unique because

it does not encompass English. This factor might have con-

tributed to the inflated accuracy for this specific pair. As the

corpus expands, it becomes imperative to introduce monolin-

gual data from MSA or EA to ensure a more holistic training

regime, thereby minimizing potential biases or overfitting

linked to the absence of English in this pair.

Fig. 1: Confusion Matrix for BERT-base-multilingual-cased

In table II, table III, and figure 1; shows that mBERT and

XLM-Roberta are more than capable of comprehending code-

switched language. While there is no baseline, 94% accuracy

is high considering that the classes include English, so it can

differentiate between plain English and code-switched English.

This performance will only improve with the expansion of

languages that do not include, as seen in MSA-EA where

it could be classified perfectly. This phenomenon is seen in

the confusion matrix showing that there is room for more

languages, and the model has generalized performance in

deciphering which code-switched pairs a sentence belongs to.

B. Language Identification Task Results

SPA-ENG HIN-ENG NEP-ENG MSA-EA Overall
Char2subword mBERT 98.33 96.23 96.19 91.19 95.48
LinCE Organizers mBert 98.36 94.24 96.32 91.55 95.12
Much Gracias Viterbi model 92.23 NA NA NA NA
bert-base-multilingual-cased 98.30 95.91 96.24 91.72 95.54
XLM-Roberta-Large 98.63 96.97 96.70 93.37 96.41

TABLE IV: Weighted F1 Performance for LID TASK of Token

Classification Per Language Pair and Overall

Examining table IV reveals a significant advancement in

our approach to the challenge. Our training regimen, which

utilized a single XLM-Roberta model, succeeded in eclipsing

the performance metrics of other methodologies. Notably,

while other strategies on the LinCE dataset predominantly de-

ployed language-specific models, our singular XLM-Roberta

model surpassed them. Such an outcome underscores the

ability of transformer models on code-switched data when

presented with a diverse array of datasets. By accessing this

diverse data, the model cultivates a profound comprehension

of the intricacies of code-switched data and its corresponding

labels. Consequently, it becomes adept at handling virtually

any language pairing with commendable accuracy. To further
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analyze our approach’s performance, the subsequent sections

examine the token-level performance.

XLM-Roberta-Large precision recall f1-score support
lang1 0.96 0.98 0.97 44675
lang2 0.97 0.96 0.97 30778
mixed 0.0 0.0 0.0 30
ambiguous 0.0 0.0 0.0 217
fw 0.0 0.0 0.0 31
ne 0.87 0.82 0.85 4892
unk 0.66 0.05 0.10 34
other 0.98 0.98 0.98 16431

TABLE V: Per Label Accuracy across all four languages

across the validation set since the test data labels are not

publicly available but the numbers are comparable

In table V, the model’s performance at the token level

remains commendable across most of the dataset. Interestingly,

the instances where precision, recall, and f1-score columns

report zeros indicate a lack of predictions for the categories

”mixed,” ”ambiguous,” and ”fw.” Several factors could con-

tribute to this, but the limited occurrences of these categories

within the dataset probably play a pivotal role. Additionally,

there might be instances of term overlap wherein a word

belongs to multiple categories, leading the model to favor

a dominant label due to its higher prevalence, subsequently

sidelining the less frequent ones. This underscores the potential

inadequacies stemming from a dearth of data on these tokens.

In summary, while there is a pressing need for expanded

data and focused research on tokens categorized as mixed,

ambiguous, fw, and unk, the current performance metrics

underscore a promising utility in practical applications.

VI. CONCLUSION

In conclusion, we have demonstrated the efficacy of con-

temporary state-of-the-art transformer models in Token Level

Language Identification (LID) and our newly introduced Lan-

guage Pair Identification (LPI) task. For the LID task, the

present state-of-the-art transformer has set a new benchmark

by outperforming all existing methods on the LinCE Dataset.

Hence, we advocate recognizing these transformer models as

the gold standard for performance in the LID domain. Our

endeavor into the Language Pair Identification task shed light

on its potential to discern distinct language pairs effectively.

The results from the LPI task provide insights into its potential

integration into existing sentiment analysis methodologies and

other tasks, facilitating the use of language pair-specific mod-

els even when the precise language pair remains unidentified.

Overall, this study furthers the frontier of language processing

techniques tailored for code-switched text, heralding enhanced

analysis and interpretation of multilingual exchanges across a

spectrum of applications.

VII. LIMITATIONS

One primary area for improvement in for our task LPI was

the dependency on labeled Token Level Language Identifica-

tion (LID) data. This reliance restricted the model’s scope to

a specific set of only four language pairs. Since MSA-EA

does not have any monolingual overlap with other datasets, it

is easier for the model to handle categorizing it so ensuring

that data is balanced and diverse across all language pairs is

imperative to prevent any biases in the model’s predictions and

achieve a more nuanced understanding of code-switched texts.

Moreover, there was a noticeable imbalance in the distribution

of token categories. Predominantly, the categories like lang1,

lang2, ne, and others were heavily represented, leading to an

underrepresentation of categories like unk, mixed, ambiguous,

and fw. This skewed distribution consequently influenced the

model’s predictive behavior, often causing it to overlook or

underpredict the less represented categories. Nevertheless, it is

essential to highlight that despite these constraints, the datasets

employed in our research successfully depicted the model’s

versatility across distinct language pairs. This adaptability

underscores the model’s potential to be effectively applied

to a more expansive array of code-switched texts in future

endeavors.

VIII. FUTURE WORK

Future work involves implementing an algorithm to uti-

lize Language Pair Identification to create fusion models of

language pair-specific models or to incorporate the Language

Pair as a feature in a general model to let the model increase

language pair-specific performance theoretically.

Additionally, Future work involves expanding the datasets,

focusing on real-world settings, and exposure to more lan-

guages. Language-conscious labeling is necessary for code-

switched data with multiple labels. New datasets containing

over 3+ languages require language-specific labels to handle

any number of languages in the text. Model hyperparameter

tuning, including increased dropout, might improve token

classification scores due to label distribution.
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